
Polymorphic Self-* Agents for Stigmergic Fault Mitigation in
Large-Scale Real-Time Embedded Systems

Paper ID: # 268

Abstract
Organization and coordination of agents within

large-scale, complex, distributed environments is one of
the primary challenges in the field of multi-agent sys-
tems. A lot of interest has surfaced recently around
self-* (self-organizing, self-managing, self-optimizing,
self-protecting) agents. This paper presents polymor-
phic self-* agents that evolve a core set of roles and be-
havior based on environmental cues. The agents adapt
these roles based on the changing demands of the envi-
ronment, and are directly implementable in computer
systems applications. The design combines strategies
from game theory, stigmergy, and other biologically in-
spired models to address fault mitigation in large-scale,
real-time, distributed systems. The agents are em-
bedded within the individual digital signal processors
of BTeV, a High Energy Physics experiment consist-
ing of 2500 such processors. Results obtained using a
SWARM simulation of the BTeV environment demon-
strate the polymorphic character of the agents, and show
how this design exceeds performance and reliability met-
rics obtained from comparable centralized, and even
traditional decentralized approaches.

Keywords: multi-agent systems, self-* agents, stig-
mergy, game theory, SWARM

1. Introduction
1 In the field of multi-agent systems, a lot of atten-

tion has been focused lately on investigating various
architectures and methodologies that promote effec-
tive organization and coordination within large-scale,
complex, distributed systems [9][2]. Specifically, the in-
terest is in developing approaches that can be imple-
mented within multi-agent systems to produce some
desirable emergent behavior that coordinates individ-
ual actors in a system competing for resources such as
bandwidth, computing power, and data.

Agent methodologies that exhibit self-* (self-
organizing, self-managing, self-optimizing, self-

1 The primary author of this paper is a student.

protecting) attributes are of particular value [8][16].
This paper introduces polymorphic self-* agents that
are capable of multiple roles as directed by the envi-
ronment. These agents evolve an optimum core set of
roles for which they are responsible, while still pos-
sessing the ability to take on alternate roles as
environmental demands change. They are directly im-
plementable in computer systems applications.

The approach is based on stigmergy, a concept
that explains organization and coordination within so-
cial insect societies that rely strictly on environmen-
tal cues for indirect communication between individu-
als. It is implemented on BTeV, a particle accelerator-
based High Energy Physics experiment currently un-
der development at Fermi National Accelerator Labo-
ratory. Multiple layers of polymorphic, very lightweight
agents (VLAs) are embedded within 2500 Digital Sig-
nal Processors (DSPs) to handle fault mitigation across
the system. The primary challenge is to determine the
frequency at which VLAs should perform specific mon-
itoring and mitigation tasks. Results show how poly-
morphic self-* VLAs evolve independently to find the
optimum rate at which fault mitigation and monitor-
ing tasks should occur. SWARM multi-agent simula-
tion software is used to model RTES/BTeV.

This paper is divided into four sections. First, some
background on polymorphism and stigmergy, along
with the BTeV experiment itself is provided. A de-
scription of VLAs embedded within Level 1 of the
RTES/BTeV environment is provided, followed by an
explanation of current challenges and other motivating
factors. Section 3 then introduces polymorphic self-*
agents and describes the design in detail. Results of a
SWARM simulation of the RTES/BTeV environment
that implements the polymorphic self-* approach are
then evaluated in Section 4. Finally, next steps and a
conclusion are provided.

2. Background and Motivation

2.1. Polymorphism and Stigmergy
Concepts of polymorphism and stigmergy are

founded in biology and the study of self-organization

within social insects. The term polymorphism is of-
ten used in describing characteristics of ants and other
social biological systems, and is defined as the occur-
rence of different forms, stages, or types in individual
organisms or in organisms of the same species, in-
dependent of sexual variations [22][15]. Within an
individual colony consisting of ants with the same ba-
sic genetic wiring, two or more castes belonging
to the same sex can be found. A caste here is de-
fined as a differentiated morphological form with a spe-
cialized function, or at least the infrequent relict of
such a form. The function or role that any individ-
ual ant takes on is dictated by cues from the environ-
ment [21].

The agents described in detail in section 3 of this pa-
per adhere to this definition of polymorphism in that
they are genetically identical, yet each evolve distinct
roles that they play as demanded of them through
changes in the environment.

The concept of polymorphic agents presented in
this paper is different from other definitions of poly-
morphism that have surfaced in computer science. In
object-oriented programming, polymorphism is usually
associated with the ability of objects to override inher-
ited class method implementations [12]. The term has
also arisen in other subareas of computer science, in-
cluding some agent designs [1], but generally describes
a templating based system or similar variation of the
object-oriented model.

Stigmergy was introduced by biologist Pierre-Paul
Grasse to describe indirect communication that takes
place between individuals in social insect societies [10].
The theory explains how organization and coordina-
tion of the building of termite nests is mainly controlled
by the nest itself, and not the individual termite work-
ers involved. It views the process of emergent coopera-
tion as a result of participants altering the environment
and reacting to the environment as they pass through
it. The canonical example of stigmergy is ants leaving
pheromones in ways that help them find the shortest,
safest distance to food or to build nests. Ant colony
optimization methods alone have had a wide impact
on coordination within multi-agent systems, address-
ing various adaptive network routing and load balanc-
ing problems [4][7].

A stigmergic approach to fault mitigation is intro-
duced in this paper. Individual agents communicate in-
directly through errors that they find (or do not find) in
the environment. This indirect communication is man-
ifested through actions that each agent takes as cued
by the environment. Results show how the local actions
of agents within the system allow self-* global behav-
ior to emerge.

2.2. RTES/BTeV
BTeV is a proposed particle accelerator-based HEP

experiment currently under development at Fermi Na-
tional Accelerator Laboratory. The goal is to study
charge-parity violation, mixing, and rare decays of par-
ticles known as beauty and charm hadrons, in order to
learn more about matter-antimatter asymmetries that
exist in the universe today [14].

The experiment uses approximately 30 planar silicon
pixel detectors that are connected to specialized field-
programmable gate arrays (FPGAs). The FPGAs are
connected to approximately 2500 digital signal proces-
sors (DSPs) that filter incoming data at the extremely
high rate of approximately 1.5 Terabytes per second
from a total of 20x106 data channels. A three tier hi-
erarchical trigger architecture will be used to handle
this high rate [14]. An overview of the BTeV trigger-
ing and data acquisition system is shown in Figure 1,
including a magnified view of the L1 Vertex Trigger re-
sponsible for Level 1 filtering consisting of 2500 Worker
nodes (2000 Track Farms and 500 Vertex Farms).

There are many Worker level tasks that the Farm-
let VLA (FVLA) is responsible for monitoring. A tradi-
tional hierarchical approach would assign one (or more)
distinct DSPs the role of the FVLA, with the respon-
sibility of monitoring the state of other Worker DSPs
on the node [5]. However, this leaves the system with
only very few possible points of failure before critical
tasks are left unattended.

Another approach would be to assign a single redun-
dant DSP (or more) to each and every Worker DSP,
to act as the FVLA [11]. However, since 2500 Worker
DSPs are projected, this would prove very expensive
and may still not fully protect all DSPs given even a
low number of system failures. The events that pass
the full set of physics algorithm filters occur very in-
frequently, and the cost of operating this environment
is high. The extremely large streams of data resulting
from the BTeV environment must be processed real-
time with highly resilient adaptive fault tolerant sys-
tems.

2.3. Very Lightweight Agents (VLAs)
Multiple levels of very lightweight agents (VLAs)

[19] are one of the primary components responsible for
fault mitigation across the BTeV data acquisition sys-
tem.

The primary objective of the VLA is to provide the
BTeV environment with a lightweight, adaptive layer
of fault mitigation. One of the latest phases of work
at Syracuse University has involved implementing em-
bedded proactive and reactive rules to handle specific
system failure scenarios.

Figure 1. The BTeV triggering and data acquisition system showing (left side) detector, buffer memories,
L1, L2, L3 clusters and their interconnects and (right side) a magnified figure of the L1 Vertex trigger.

A scaled prototype of the Level 1 RTES/BTeV en-
vironment was presented at the SuperComputing 2003
(SC2003) conference [18]. Reactive and proactive VLA
rules were integrated within this Level 1 prototype and
served a primary role in demonstrating the embedded
fault tolerant capabilities of the system.

2.4. Challenges

While the SC2003 prototype was effective for
demonstrating the real-time fault mitigation capa-
bilities of VLAs on limited hardware utilizing 16
DSPs, one of the major challenges is to find out
how the behavior of the various levels of VLAs will
scale when implemented across the 2500 DSPs pro-
jected for BTeV [13]. In particular, how frequently
should these monitoring tasks be performed to opti-
mize available processing time, and what affect does
this have on other components and the overall behav-
ior of a large-scale real-time embedded system such as
BTeV.

Given the number of components and countless fault
scenarios involved, it is infeasible to design an ‘ex-
pert system’ that applies mitigative actions triggered
from a central processing unit acting on rules captur-
ing every possible system state. Instead, the next sec-
tion describes a distributed approach that uses self-
organizing VLAs to accomplish fault mitigation within
the large-scale real-time RTES/BTeV environment.

2.5. SWARM

SWARM (http://www.swarm.org), distributed un-
der the GNU General Public License, is software avail-
able as a Java or Objective-C development kit that al-
lows for the multi-agent simulation of complex systems
[3][6]. It consists of a set of libraries that facilitate im-
plementation of agent-based models. SWARM has pre-
viously been used by the RTES team in simulations
that model the RTES/BTeV environment [17].

3. Polymorphic Self-* Agents

3.1. Overview

This paper introduces a stigmergic multi-agent sys-
tems approach that uses polymorphic self-* agents to
address the weaknesses inherent in traditional hierar-
chical fault mitigation designs. In this model, rather
than hard-wiring the assignment of FVLA roles to spe-
cific VLAs embedded within individual DSPs, VLAs
are made polymorphic so that every VLA is equipped
to play the role of FVLA for any DSP on the same
node.

Since the FVLA is responsible for a wide range of
monitoring tasks, this means that we must build the
capability of performing each task into every Worker
Level VLA. The classic problem this presents in tra-
ditional hierarchical approaches is how to process all
of the data necessary for all of these tasks in time for

a useful response [23]. However, since these agents are
polymorphic and evolve roles gradually over time, there
is only a small set of tasks for which each agent is re-
sponsible for at any given point in time.

Stigmergy is used to determine which set of tasks
any given VLA performs. Errors found (or not found)
in the environment by an individual VLA increase (de-
crease) the sensitivity of that VLA to that particu-
lar type of error. Agents start out by monitoring each
type of error at a fixed rate. Then, based entirely on
what is encountered in the environment, each devel-
ops a core set of roles for which it takes responsibility.
For example, a single VLA embedded within a DSP
monitors each particular error at some unique rate.
When an individual VLA performs a monitoring task
on some DSP, it either finds an error and performs mit-
igative action, or does not find an error and does noth-
ing. If it finds an error, it increases its own sensitiv-
ity to that type of error on the corresponding DSP. If
it does not find an error, its sensitivity to the error
decreases slightly. Results show how, over time, this
produces an optimal distribution of monitoring tasks
across all VLAs, with each VLA evolving responsibil-
ity for a unique core set of monitoring tasks.

The overall emergent behavior of this design results
in self-organization of FVLA responsibilities based on
the state and workload of all DSPs within the node. A
certain set of VLAs may perform specific FVLA tasks
at one moment, and another set (which may or may
not include VLAs from the original set) can be found
performing these same tasks later in time. The organi-
zation occurs automatically within the system as envi-
ronmental cues fluctuate. This eliminates the financial
and efficiency costs associated with having specialized
FVLAs that at times sit idle as Worker DSPs operate
at full capacity and fall behind on event processing. It
also increases the efficiency of Worker DSPs that may
be wasting idle time when crossing processing rates are
low. In effect, a fully connected network of FVLAs is
created that will continue to provide effective fault mit-
igation when exposed to a high volume of system fail-
ures.

There are two key characteristics of this model. The
first is that it requires no central management or global
processing. Second, it is optimally reliable since FVLA
monitoring tasks are distributed across all DSPs, and
can be adapted based on changes in the environment.
The next section explains implementation details on
how each individual agent uses only cues from the en-
vironment to determine necessary actions.

3.2. Implementation
As described above, distributed VLAs within

Worker level DSPs are used to accomplish the fault

monitoring tasks that the FVLA is responsible for.
However, these are the same DSPs that are responsi-
ble for the critical overall objective of Level 1 physics
application (PA) data filtering [14]. It is therefore ex-
tremely important that DSP usage by each Worker
VLA is minimal, and only occurs either when the PA is
not fully utilizing the DSP, or when critical fault mit-
igative action is required.

Game theory has been applied to a wide range of
problems, and is used here to coordinate the amount
of DSP clock cycle that is allocated between the PA and
the VLA. Both the PA and VLA wish to maximize the
number of clock cycles during which they have control.
If the VLA takes too many DSP cycles, then the PA
will be unable to process the incoming data at a high
enough rate to prevent the buffers from overflowing, re-
sulting in a loss of data continuity. This is often fatal
for the experiment since this lost data could very well
contain portions of vital characteristics of the physics
properties being evaluated. If on the other hand, the
PA takes too many DSP cycles, then it runs the risk
that system faults will go undetected, resulting in ac-
ceptance of corrupt data, and/or incremental bottle-
necks that again cause buffer overflows.

An efficient adaptive scheduling algorithm is re-
quired that will effectively establish scheduling priori-
ties between the PA and VLA. Mandatory costs asso-
ciated with the Kernel/Command Processor, including
clock cycle costs for context switching must be factored
in. An analysis of the worst-case behavior of tasks (both
VLA and PA) can be done to determine the amount of
time that must be allotted to each process. However,
there must be a way for the system to adaptively mod-
ify these values when environmental conditions change.
That is, if during every interval T, the HEP applica-
tions and the operating system use TPA and TOS time
units, respectively, then the VLA will be allowed to use
T – TPA – TOS every T time units [19].

An analysis of best-case behavior of tasks (VLA
and PA) requires the use of a utility value in or-
der for each DSP to determine locally precisely when
the PA or VLA should relinquish control [20]. A re-
ward system based on a combination of the amount
of data processed, along with the frequency of VLA
maintenance checks, is used by each DSP for each er-
ror in calculating the following local utility value :

DSP Utility Value = Dw−1 + cF−1 , where

D = Expected amount of data that DSP could process
during a given time interval (T).

w = Current data buffer watermark.
F = Total number of clock cycles elapsed since last

FVLA check on neighboring DSPs.
c = Adaptive constant representing weight to place on

FVLA checks.

Since the amount of data that any single DSP can
process (D) over a given time interval is mostly fixed,
the utility value essentially involves summing the in-
verse of the current data buffer watermark (w−1) with a
weighted value for the inverse of the time elapsed since
individual FVLA tasks were last performed (F−1).

The task currently active (PA or VLA) calcu-
lates the optimum expected utility value for the DSP
at a time interval based on the criticality of each er-
ror. If the active process determines that a higher
DSP utility value is received by remaining ac-
tive, then the active task will continue. However, if
a higher utility value can be gained by passing con-
trol to the currently inactive process, then that is
what does. For example, if the PA is currently ac-
tive, the input data buffer for a given DSP is low, and
FVLA monitoring responsibilities for a specific er-
ror have not been performed on a particular DSP
in a long time, then the VLA task will be made ac-
tive. If however, the VLA was currently active under
these conditions, then the VLA would simply main-
tain control for another T time steps, at which time
corresponding utility values would again be calcu-
lated. This is equivalent to determining (for each indi-
vidual monitoring task) :

max(w, 2 × ((1 / (1 + e−dF)) - .5)

the maximum value of either w or 2 × ((sigmoid func-
tion value for F) - .5). Here, 2 × ((1 / (1 +e−dF)) -
.5) is an adjusted sigmoid function for F which repre-
sent F as a weighted value between 0 and 1.

It is important to note here that the value assigned
to d determines the steepness of the sigmoid function,
and hence the sensitivity of the agent to a given error.
In other words, the higher the value of d, the higher the
adjusted sigmoid value of F, and the higher the sensi-
tivity (the frequency of checks) of the VLA to a par-
ticular error.

This is where the polymorphic behavior of the VLA
is introduced. Any time that an individual VLA finds a
specific error while performing FVLA monitoring tasks,
the d value for that error on that particular node is in-
creased. Any time that an individual VLA performs a
monitoring task and does not find an error, the d value
is slightly decreased.

A high value for F means that FVLA tasks are per-
formed more frequently (high sensitivity), whereas a
low value for F means they are performed less often
(low sensitivity). The PA is passed (or maintains) con-

trol if w is higher than this adjusted sigmoid func-
tion value for F, otherwise the VLA is passed (main-
tains) control. For example, if the PA is currently ac-
tive, the input data buffer watermark for a given DSP
is about half full (w=.5), and FVLA functions have re-
cently been performed (the adjusted sigmoid function
value for F is, say, .15) then the PA will remain ac-
tive.

4. Results

SWARM simulates Farmlet data buffer queues that
are populated at a rate consistent with the behavior of
the incoming physics crossing data. Each DSP within a
given Farmlet processes a fixed amount of data at each
discrete time step. Three distinct types of errors are in-
troduced randomly within each Worker DSP at a vari-
able rate using a Multiply With Carry (RWC8gen) ran-
dom number generator with a fixed seed. Any time a
software or hardware error is encountered within the
simulation, the processing rate for that DSP decreases
a set amount depending on the type of error. The er-
ror is cleared when any DSP within the same Farm-
let performs FVLA checks against the DSP for the er-
ror type present. However, there is a time cost associ-
ated with performing these checks. As detailed in the
section above describing the self-organizing model, the
DSP must decide whether or not it is worth taking time
to perform FVLA monitoring tasks against neighboring
DSPs. If checks are performed too frequently, then the
time available for data crossing processing is limited.
On the other hand, if they are not performed frequently
enough, then the chance that other DSPs within the
same Farmlet are experiencing errors is high. As de-
scribed, a high error rate will also lead to slow process-
ing rates.

The formula designed for these experiments cal-
culates the frequency of performing FVLA tasks for
neighboring DSPs as a sigmoid function adjusted to a
value between 0.0 and 1.0. The fullness of the cross-
ing data buffer queue is also a value between 0.0 and
1.0 representing the data watermark percentage. These
two values are weighed against each other, and the DSP
makes a decision on where to devote its energy as de-
scribed in detail in the last section.

The decision of whether the VLA or PA has con-
trol of the DSP is made by each DSP at each time
step in the SWARM simulation. In this way, the mon-
itoring tasks required by the environment are always
met, but not necessarily by one (or a few) designated
DSPs. Instead, these tasks are performed by any poly-
morphic DSP within the Farmlet as dictated by the
changing needs of the environment.

The DSPs themselves self-organize as different DSPs

Figure 2. The VLA d-value (sensitivity) for 3 distinct error types (e1, e2, e3) being monitored on DSP1. Each
of the 5 graphs represent the d-value adapted over time by each of the remaining 5 DSPs (DSP2 - DSP6)
on the same Farmlet. The simulation fluctuated the error rate between a moderate rate (5 x 10−4) for the
first 35000 time steps, a low rate (5 x 10−6) for the next 35000 time steps (35001 - 70000), and a high rate
(5 x 10−3) for the last 30000 time steps (70000 - 100000).

within the Farmlet take on the necessary monitoring
tasks at different points in time as required by the en-
vironment. If a DSP performs FVLA monitoring tasks
for a given type of error on a neighboring DSP, it will
either determine that the error is not present, or it
will find the error and perform the designated mitiga-
tive actions. In the case where an error is found, the
d-value for that particular error on the specific DSP is
increased. As described in detail earlier, this essentially
increases the sensitivity of the VLA for this type of er-
ror. On the other hand, if no error is found, then the
d-value (sensitivity) is slightly decreased.

As detailed next, Figure 2 shows how the local ac-
tion performed by each VLA over a short period of time
results in VLAs evolving responsibility for a core set of
fault monitoring tasks. Over the 100000 time steps for
which the SWARM simulation is run, the 5 VLAs (1
per DSP) can be seen taking on distinct roles that lead

to an efficient global fault mitigation strategy for mon-
itoring errors on DSP1. These roles are evolved using
local information only, and rely on stigmergy within
the environment for indirect coordination with other
VLAs.

The simulation fluctuates the error rate at various
intervals in order to demonstrate the affect changes in
error rate can have on polymorphic behavior. A moder-
ate error rate (5 x 10−4) is used for the first 35000 time
steps, a low error rate (5 x 10 −6) for the next 35000
time steps (35001-70000), and the last 30000 time steps
(70001-100000) use a high rate (5 x 10 −3). Figure 2
shows how all of the VLAs are able to adjust sensitiv-
ity to errors on DSP1 based on these fluctuating error
rates over time. For example, the d-value (sensitivity)
to individual errors on DSP1 for all 5 VLAs (embed-
ded within DSP2 - DSP6) can be seen dropping begin-
ning around time step 35000, and then increasing dra-

Figure 3. Average number of crossings processed
per DSP resulting from the stigmergic approach
using polymorphic agents(adaptive), compared
against the same simulation using a fixed moni-
toring rate (d-value fixed at .01).

matically again at time step 70000 in reaction to the
significant increase in error rate.

Polymorphism is demonstrated clearly in Figure 2
which displays the VLA d-value (sensitivity) for 3 dis-
tinct error types being monitored on DSP1 within a sin-
gle Farmlet. The d-values evolved by each of the VLAs
within the 5 DSPs (DSP2-DSP6) monitoring DSP1
within the same Farmlet are shown. When the error
rate is high (from time steps 70000-100000), the VLAs
embedded within DSP3 and DSP6 develop a high sen-
sitivity for error type 1 (e1), while the sensitivity for e1
of the VLAs in the remaining DSPs remains low. Sim-
ilarly, the VLAs on DSP2 and DSP5 have a high sen-
sitivity for error type 2 (e2), and VLAs for DSP2 and
DSP3 are highly sensitive to e3.

The moderate error rate used for the first 35000 time
steps reveals additional polymorphic characteristics of
this approach. Here, the error rate is not quite high
enough for any single VLA to evolve long term respon-
sibility for an individual error type on DSP1. Instead,
1 or 2 VLAs can be seen monitoring a single error type
at one moment, and then a separate VLA (or group
of VLAs) can be seen monitoring the same error type
a short time later. This is due to the fact that the er-
ror rate is too low to stimulate high sensitivity in a sin-
gle VLA. Sensitivity for the error type drops to a level
comparable with other available VLAs on the Farm-
let. For example, the VLAs on DSP 3 and DSP 4 de-
velop a modest level of sensitivity for e1 early on (time
steps 0-15000), but the role is taken over by VLAs
on DSP 5 (time steps 15000-28000) and later DSP6

(28000-35000).
Figure 3 shows the average data processing rate per

DSP for the stigmergic approach using polymorphic
agents, as compared to the same simulation using a
fixed monitoring rate (d-value fixed at .01) for each
agent. The polymorphic agents in the stigmergic ap-
proach adapt an optimum monitoring rate for each er-
ror based strictly on the demands of the environment
at any given time. This results in a higher number of
crossings processed since, as described in detail ear-
lier, less time is wasted performing needless monitor-
ing tasks or missing critical errors.

5. Next Steps

The results presented in this paper demonstrate how
2500 polymorphic agents coordinate using stigmergy
to effectively perform fault mitigation in a large-scale,
real-time distributed environment. The agents evolve
a core set of roles that each perform to mitigate three
distinct types of errors introduced randomly in the sys-
tem. The next phase of this project will expand the
number of different types of errors handled, along with
the amount of fluctuation in error rates.

Another important area of investigation for the next
phase is to focus further on how sensitivity (d-value)
is adapted for each VLA. Currently, a rudimentary
method is used that slightly increases (or decreases)
sensitivity based on the presence (or absense) of an er-
ror. Other variables could be considered in determin-
ing the amount of change to apply, such as factoring in
the severity level of the error, or looking at the conse-
quences of other recently taken actions. An enhanced
evaluation methodology to better demonstrate the per-
formance advantage of this approach as compared to
other traditional methodologies is also necessary.

At the same time, another scaled prototype of the
actual projected RTES/BTeV software and hardware
environment based on the SC2003 demonstration sys-
tem is also being developed, and will integrate the VLA
self-* model. This prototype will be presented at the
2nd Workshop on High-Performance Fault-Adaptive
Large-Scale Embedded Real-Time Systems (FALSE-II)
in the IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS05).

6. Conclusion

This paper has described a fully distributed stigmer-
gic approach to fault mitigation in large-scale real-time
systems using lightweight, polymorphic, self-* agents
embedded within individual DSPs. Stigmergy facil-
itates indirect communication and coordination be-
tween agents using cues from the environment, and
concepts from game theory and polymorphism allow in-

dividual agents to evolve a core set of roles for which it
is responsible. Agents adapt these roles as environmen-
tal demands change. The approach is implemented on
a SWARM simulation of BTeV, a High Energy Physics
experiment consisting of 2500 DSPs.

Results demonstrate the polymorphic nature of the
agents, and display the performance and reliability
advantages of this approach. The next phase of this
project will increase the number of possible error types,
and add more fluctuation to individual error rates.More
sophisticated ways of adapting error sensitivity among
agents will also be investigated, along with more elab-
orate performance evaluation metrics.

Acknowledgements

The research conducted was sponsored by the National
Science Foundation in conjunction with Fermi National
Laboratories, under the BTeV Project, and in associ-
ation with RTES, the Real-time, Embedded Systems
Group. This work has been performed under NSF grant
ACI-0121658.

References

[1] B. Barbat and C. Zamfirescu. Polymorphic Agents
for Modelling E-Business Users. International NAISO
Congress on Information Science Innovations, Sympo-
sium on E-Business and Beyond (EBB), Dubai, 2000.

[2] F. Brazier, D. Mobach, B. Overeinder, and N. Wijn-
gaards. Supporting life cycle coordination in open agent
systems, 2002.

[3] R. Burkhart. Schedules of Activity in the SWARM Sim-
ulation System. Position Paper for OOPSLA Workshop
on OO Behavioral Semantics, 1997.

[4] G. D. Caro and M. Dorigo. Ant Colonies for Adap-
tive Routing in Packet-Switched Communications Net-
works. Lecture Notes in Computer Science, 1498:673–
683, 1998.

[5] F. Cristian. Abstractions for fault-tolerance. In K. Dun-
can and K. Krueger, editors, Proceedings of the IFIP
13th World Computer Congress. Volume 3 : Linkage and
Developing Countries, pages 278–286, Amsterdam, The
Netherlands, 1994. Elsevier Science Publishers.

[6] M. Daniels. An Open Framework for Agent-based Mod-
eling. Applications of Multi-Agent Systems in Defense
Analysis, a workshop held at Los Alamos Labs, April
2000.

[7] M. Dorigo and T. Stotzle. Ant Colony Optimization.
Bradford Books (MIT Press), 2004.

[8] J. Dowling, R. Cunningham, E. Curran, and V. Cahill.
Component and system-wide self-* properties in decen-
tralized distributed systems. Self-Star: International
Workshop on Self-* Properties in Complex Information
Systems, University of Bologna, Italy, May 31 - June 2
2004.

[9] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar.
Next century challenges: Scalable coordination in sensor
networks. In Mobile Computing and Networking, pages
263–270, 1999.

[10] P. P. Grassé. La reconstruction du nid et les coordina-
tions inter-individuelles chez Bellicosi-termes natalen-
sis et Cubitermes sp. La theorie de la stigmergie: Essai
d’interpretationdes termites constructeurs. Insectes So-
ciaux, 6:pages 41–83, 1959.

[11] W. Heimerdinger and C. Weinstock. A conceptual
framework for system fault tolerance. Software engi-
neering institute, carnegie mellon university, cmu/sei-
92-tr-33, esc-tr-92-033, October, 1992.

[12] N. M. Josuttis. Object Oriented Programming in C++.
John Wiley & Sons; 1st edition, 2002.

[13] J. Kowalkowski. Understanding and Coping with Hard-
wareandSoftwareFailures inaVeryLargeTriggerFarm.
Conference for Computing in High Energy and Nuclear
Physics (CHEP), March 2003.

[14] S. Kwan. The BTeV Pixel Detector and Trigger System.
FERMILAB-Conf-02/313, December 2002.

[15] J. H. Law, W. O. Wilson, and J. McCloskey. Biochem-
ical Polymorphism in Ants. Science, 149:pages 544–6,
July 1965.

[16] Z. Li, H. Liu, and M. Parashar. Enabling autonomic,
self-managing grid applications.

[17] D. Messie and J. Oh. SWARM Simulation of Multi-
Agent Fault Mitigation in Large-Scale, Real-Time Em-
bedded Systems. High Performance Computing and
Simulation (HPC&S) Conference, Magdeburg, Ger-
many, June 2004.

[18] D. Messie et al. Prototype of Fault Adaptive Embedded
Software forLarge-ScaleReal-TimeSystems. 2ndWork-
shop on Engineering of Autonomic Systems (EASe), in
the 12th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Sys-
tems (ECBS), Washington, DC USA, April 2005.

[19] J. Oh, D. Mosse, and S. Tamhankar. Design of Very
Lightweight Agents for Reactive Embedded Systems.
IEEEConferenceontheEngineeringofComputerBased
Systems (ECBS), Huntsville, Alabama, April 2003.

[20] A. Rapoport and R. Zwick. Game Theory. In A.E.
Kazdin, Encyclopedia of Psychology (pp. 424-426).New
York: Oxford University Press, 2000.

[21] D. E. Wheeler. Developmental and Physiological De-
terminants of Caste in Social Hymenoptera: Evolution-
ary Implications. AmericanNaturalist, 128:pages13–34,
1986.

[22] E. O. Wilson. The Origin and Evolution of Polymor-
phism in Ants. Quarterly Review of Biology, 28:pages
136–156, 1953.

[23] M. Wooldridge and N. R. Jennings. In-
telligent agents: Theory and practice.
HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-
html.h (Hypertext version of Knowledge Engineering
Review paper), 1994.

